
GitDB Documentation
Release 0.5.1

Sebastian Thiel

November 19, 2014

Contents

1 Overview 3
1.1 Installing GitDB . 3
1.2 Getting Started . 3
1.3 Source Repository . 3

2 Usage Guide 5
2.1 Design . 5
2.2 Streams . 5
2.3 Data Query and Data Addition . 6
2.4 Asynchronous Operation . 6
2.5 Databases . 7

3 API Reference 9
3.1 Database.Base . 9
3.2 Database.Git . 9
3.3 Database.Loose . 9
3.4 Database.Memory . 9
3.5 Database.Pack . 9
3.6 Database.Reference . 9
3.7 Base . 9
3.8 Functions . 9
3.9 Pack . 9
3.10 Streams . 9
3.11 Types . 9
3.12 Utilities . 9

4 Changelog 11
4.1 0.5.1 . 11
4.2 0.5.0 . 11

5 Indices and tables 13

i

ii

GitDB Documentation, Release 0.5.1

Contents:

Contents 1

GitDB Documentation, Release 0.5.1

2 Contents

CHAPTER 1

Overview

The GitDB project implements interfaces to allow read and write access to git repositories. In its core lies the db pack-
age, which contains all database types necessary to read a complete git repository. These are the LooseObjectDB,
the PackedDB and the ReferenceDB which are combined into the GitDB to combine every aspect of the git
database.

For this to work, GitDB implements pack reading, as well as loose object reading and writing. Data is always encap-
sulated in streams, which allows huge files to be handled as well as small ones, usually only chunks of the stream are
kept in memory for processing, never the whole stream at once.

Interfaces are used to describe the API, making it easy to provide alternate implementations.

1.1 Installing GitDB

Its easiest to install gitdb using the easy_install program, which is part of the setuptools:

$ easy_install gitdb

As the command will install gitdb in your respective python distribution, you will most likely need root permissions
to authorize the required changes.

If you have downloaded the source archive, the package can be installed by running the setup.py script:

$ python setup.py install

1.2 Getting Started

It is advised to have a look at the Usage Guide for a brief introduction on the different database implementations.

1.3 Source Repository

The latest source can be cloned using git from one of the following locations:

• git://gitorious.org/git-python/gitdb.git

• git://github.com/Byron/gitdb.git

3

http://peak.telecommunity.com/DevCenter/setuptools

GitDB Documentation, Release 0.5.1

1.3.1 License Information

GitDB is licensed under the New BSD License.

4 Chapter 1. Overview

CHAPTER 2

Usage Guide

This text briefly introduces you to the basic design decisions and accompanying types.

2.1 Design

The GitDB project models a standard git object database and implements it in pure python. This means that data, being
classified by one of four types, can can be stored in the database and will in future be referred to by the generated SHA1
key, which is a 20 byte string within python.

GitDB implements RW access to loose objects, as well as RO access to packed objects. Compound Databases allow to
combine multiple object databases into one.

All data is read and written using streams, which effectively prevents more than a chunk of the data being kept in
memory at once mostly 1.

2.2 Streams

In order to assure the object database can handle objects of any size, a stream interface is used for data retrieval as well
as to fill data into the database.

2.2.1 Basic Stream Types

There are two fundamentally different types of streams, IStreams and OStreams. IStreams are mutable and are used
to provide data streams to the database to create new objects.

OStreams are immutable and are used to read data from the database. The base of this type, OInfo, contains only type
and size information of the queried object, but no stream, which is slightly faster to retrieve depending on the database.

OStreams are tuples, IStreams are lists. Both, OInfo and OStream, have the same member ordering which allows
quick conversion from one type to another.

1 When reading streams from packs, all deltas are currently applied and the result written into a memory map before the first byte is returned.
Future versions of the delta-apply algorithm might improve on this.

5

GitDB Documentation, Release 0.5.1

2.3 Data Query and Data Addition

Databases support query and/or addition of objects using simple interfaces. They are called ObjectDBR for read-only
access, and ObjectDBW for write access to create new objects.

Both have two sets of methods, one of which allows interacting with single objects, the other one allowing to handle
a stream of objects simultaneously and asynchronously.

Acquiring information about an object from a database is easy if you have a SHA1 to refer to the object:

ldb = LooseObjectDB(fixture_path("../../.git/objects"))

for sha1 in ldb.sha_iter():
oinfo = ldb.info(sha1)
ostream = ldb.stream(sha1)
assert oinfo[:3] == ostream[:3]

assert len(ostream.read()) == ostream.size
END for each sha in database

To store information, you prepare an IStream object with the required information. The provided stream will be read
and converted into an object, and the respective 20 byte SHA1 identifier is stored in the IStream object:

data = "my data"
istream = IStream("blob", len(data), StringIO(data))

the object does not yet have a sha
assert istream.binsha is None
ldb.store(istream)
now the sha is set
assert len(istream.binsha) == 20
assert ldb.has_object(istream.binsha)

2.4 Asynchronous Operation

For each read or write method that allows a single-object to be handled, an _async version exists which reads items to
be processed from a channel, and writes the operation’s result into an output channel that is read by the caller or by
other async methods, to support chaining.

Using asynchronous operations is easy, but chaining multiple operations together to form a complex one would require
you to read the docs of the async package. At the current time, due to the GIL, the GitDB can only achieve true
concurrency during zlib compression and decompression if big objects, if the respective c modules where compiled in
async.

Asynchronous operations are scheduled by a ThreadPool which resides in the gitdb.util module:

from gitdb.util import pool

set the pool to use two threads
pool.set_size(2)

synchronize the mode of operation
pool.set_size(0)

Use async methods with readers, which supply items to be processed. The result is given through readers as well:

6 Chapter 2. Usage Guide

GitDB Documentation, Release 0.5.1

from async import IteratorReader

Create a reader from an iterator
reader = IteratorReader(ldb.sha_iter())

get reader for object streams
info_reader = ldb.stream_async(reader)

read one
info = info_reader.read(1)[0]

read all the rest until depletion
ostreams = info_reader.read()

2.5 Databases

A database implements different interfaces, one if which will always be the ObjectDBR interface to support reading
of object information and streams.

The Loose Object Database as well as the Packed Object Database are File Databases, hence they operate on a
directory which contains files they can read.

File databases implementing the ObjectDBW interface can also be forced to write their output into the specified stream,
using the set_ostream method. This effectively allows you to redirect its output to anywhere you like.

Compound Databases are not implementing their own access type, but instead combine multiple database implemen-
tations into one. Examples for this database type are the Reference Database, which reads object locations from a file,
and the GitDB which combines loose, packed and referenced objects into one database interface.

For more information about the individual database types, please see the API Reference, and the unittests for the
respective types.

2.5. Databases 7

GitDB Documentation, Release 0.5.1

8 Chapter 2. Usage Guide

CHAPTER 3

API Reference

3.1 Database.Base

3.2 Database.Git

3.3 Database.Loose

3.4 Database.Memory

3.5 Database.Pack

3.6 Database.Reference

3.7 Base

3.8 Functions

3.9 Pack

3.10 Streams

3.11 Types

3.12 Utilities

9

GitDB Documentation, Release 0.5.1

10 Chapter 3. API Reference

CHAPTER 4

Changelog

4.1 0.5.1

• Restored most basic python 2.4 compatibility, such that gitdb can be imported within python 2.4, pack access
cannot work though. This at least allows Super-Projects to provide their own workarounds, or use everything
but pack support.

4.2 0.5.0

Initial Release

11

GitDB Documentation, Release 0.5.1

12 Chapter 4. Changelog

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

13

	Overview
	Installing GitDB
	Getting Started
	Source Repository

	Usage Guide
	Design
	Streams
	Data Query and Data Addition
	Asynchronous Operation
	Databases

	API Reference
	Database.Base
	Database.Git
	Database.Loose
	Database.Memory
	Database.Pack
	Database.Reference
	Base
	Functions
	Pack
	Streams
	Types
	Utilities

	Changelog
	0.5.1
	0.5.0

	Indices and tables

